

Spec No. :DS23-2017-0005 Effective Date: 02/16/2017

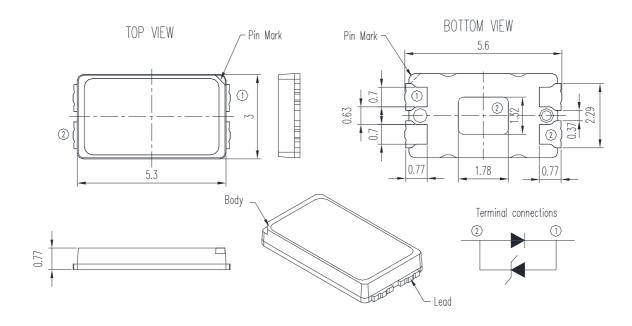
Revision: -

LITE-ON DCC

RELEASE

BNS-OD-FC001/A4

1. Description


The LiteON 5630 Product series is a wide beam angle standard-dimension package, combining the lifetime and reliability advantages of Light Emitting Diodes with the brightness of conventional lighting. It gives you total design freedom and unmatched brightness, creating a new opportunities for solid state lighting to displace conventional lighting technologies.

1.1 Features

- Package in 8mm tape on 7" diameter reels.
- Compatible with automatic placement equipment.
- Compatible with infrared and vapor phase reflow solder process.
- EIA STD package.
- I.C. compatible.
- Meet green product and Pb-free(According to RoHS)

2. Outline Dimensions

Part No.	Lens Color	Source Color
LTW-5630SD458	Clean	InGaN Blue

Notes:

- 1. All dimensions are in millimeters.
- 2. Tolerance is ±0.2 mm (.008") unless otherwise noted.

3. Absolute Maximum Ratings at Ta=25℃

Parameter	Symbol	Rating	Unit
DC Forward Current	l _F	200	mA
Pulsed Forward Current (*1)	I _{FP}	260	mA
Power Dissipation	P_D	670	mW
Operating Temperature	T_{opr}	-40 ~ +85	°C
Storage Temperature	T_{stg}	-40 ~ +100	°C
Dice Temperature	T_{j}	≦110	°C

Notes:

- 1. 1/10 duty cycle, Pulse width 10msec.
- 2. Forbid to operating at reverse voltage condition for long.

4. Electro-Optical Characteristics

4.1 Typical Performance

Parameter	Symbol		Values	Unit	Test Condition
		Min	200		
Radiant Flux	Фе	Тур.	220	mW	
		Max.	332		
Luminous Flux	Ф۷	Тур.	9.0	lm	
		Min	450		
Dominant Wavelength	Wd	Тур.	458	nm	
		Max.	465		
Peak Wavelength	Wp	Тур.	453	nm	<i>I</i> _F =150mA
Photon Flux	PPF	Тур.	0.84	μ mol/s	
Spectral Line Half-width	Δλ	Тур.	20	nm	
Viewing angle	2 θ 1/2	Тур.	120	deg	
		Min	2.8		
Forward Voltage	V _F	Тур.	3.2	V	
		Max.	3.6		
ESD-Withstand voltage	ESD	Max.	5K	V	НВМ

Notes

- 1. Radiant flux and Dominant Wavelength are the total flux output as measured with an integrating sphere.
- 2. Radiant flux classification code is marked on each packing bag.
- 3. CAS-140B is the test standard for Radiant flux & Dominant Wavelength & Voltage.

4.2 Typical Electrical / Optical Characteristics Curves

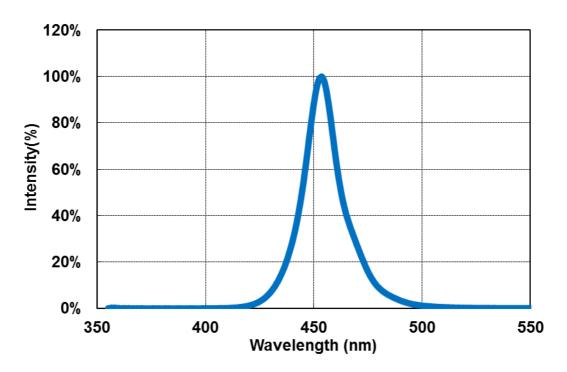


Fig1. Relative Spectrum of Emission

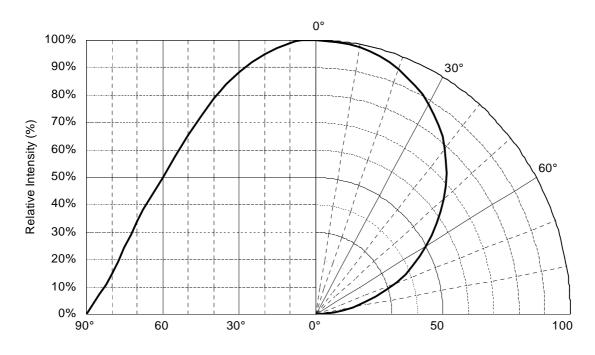


Fig2. Radiation Characteristics

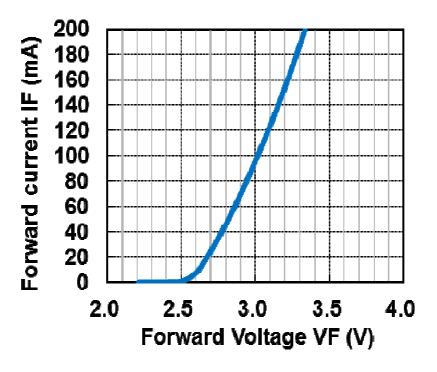


Fig3. Forward Current vs. Voltage

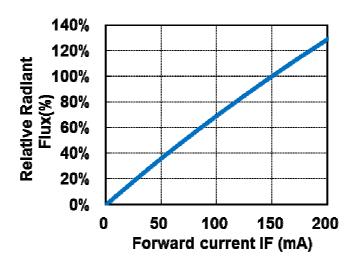


Fig.4. Forward Current vs. Relative Radiant Flux

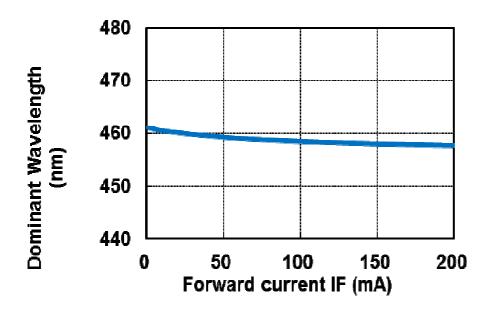


Fig5. Forward Current vs. Dominant Wavelength

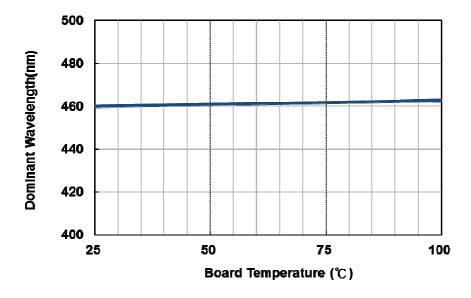


Fig6. Board Temperature vs. Dominant Wavelength

5. Bin Code List

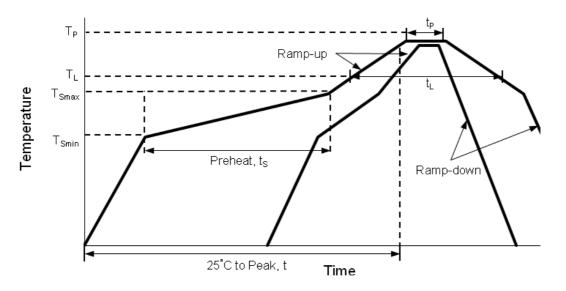
Forward Voltage Spec. Table					
V₅ Bin	IF =150mA, Ta=25℃				
VF DIII	Min Max				
7	2.8	3.0			
8	3.0	3.2			
9	3.2	3.4			
10	3.4	3.6			

Radiant flux (mW) Table				
mW Rin	IF =150mA, Ta=25℃			
mW Bin	Min	Max		
B1	200	220		
B2	220	242		
B3	242	266		
B4	266	293		
B5	293	322		

Dominant Wavelength Spec. Table				
IF =150mA, Ta=25℃				
W _d Bin	Min	Max		
D1	450	455		
D2	455	460		
D3	460	465		

Notes

- 1. The flux is operated performance with forward current 150mA per die.
- 2. Flux is the total luminous flux output as initial measured with an integrated sphere.
- 3. Forward Voltage (V_F) measurement allowance is ±0.1V.
- 4. Flux measurement allowance is ±10%.
- 5. Wavelength allowance is ±5nm



% Notes: Full Rank on Label

Example: 8/B1/D1

Forward Voltage Rank	Radiant flux Rank	Dominant Wavelength Rank	
8	B1	D1	

6. Reflow Soldering Characteristics

Profile Feature	Lead Free Assembly
Average Ramp-Up Rate (T _{Smax} to T _P)	3℃ / second max
Preheat Temperature Min (Tsmin)	150℃
Preheat Temperature Max (T _{Smax})	200℃
Preheat Time (tsmin to tsmax)	60 – 180 seconds
Time Maintained Above Temperature (T _L)	217℃
Time Maintained Above Time (tL)	60 – 150 seconds
Peak / Classification Temperature (T _P)	260℃
Time Within 5℃ of Actual Peak Temperature (t P)	5 seconds
Ramp – Down Rate	6℃ / second max
Time 25℃ to Peak Temperature	8 minutes max

Notes:

- 1. The LEDs can be soldered using the reflow soldering or hand soldering method. The recommended hand soldering condition is 350 ℃ max. and 2 secs max. for one time only, and the recommended reflow soldering condition is 260 ℃ max. and 5 secs max. for three times max.
- 2. All temperatures refer to topside of the package, measured on the package body surface.
- 3. The soldering condition referring to J-STD-020B. The storage ambient for the LEDs should not exceed 30 ℃ temperature or 70% relative humidity. It is recommended that LEDs out of their original packaging are soldered within one week. For extended storage out of their original packaging, it is recommended that the LEDs were stored in a sealed container with appropriate desiccant, or desiccators with nitrogen ambient. If the LEDs were unpacked more than 168hrs, baking the LEDs at 60 ℃ for 24hrs before soldering process.
- 4. The soldering profile could be further referred to different soldering grease material characteristic. The grease vendor will provide this information.
- 5. A rapid-rate process is not recommended for the LEDs cooling down from the peak temperature.
- 6. Although the recommended reflow conditions are specified above, the reflow or hand soldering condition at the lowest possible temperature is desirable for the LEDs.
- LiteOn cannot make a guarantee on the LEDs which have been already assembled using the dip soldering method.

Part No. : LTW-5630SD458 BNS-OD-FC002/A4

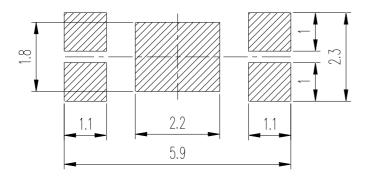
7. Reliability Test

No	Test item	Test Condition	Duration	Number of Damaged
1	Operating Test	Ta=25℃, IF=150mA	1,000hrs	0/20
2	High Temp. Operating Test	Ta=85℃, IF=150mA	1,000hrs	0/20
3	High Humidity Operating Test	Ta=85℃, RH=85%, IF=1 50mA	1,000hrs	0/20
4	Low Temp. Operating Test	Ta=-40℃, IF=150mA	1,000hrs	0/20
5	High Temp. Storage Test	Ta=100℃	1,000hrs	0/20
6	Low Temp. Storage Test	Ta=-40℃	1,000hrs	0/20
7	High Humidity .Storage Test	Ta=60℃, RH=90%	1,000hrs	0/20
8	Temperature Cycle Test	Ta= -40℃, 30min . ~25℃, 5min . ~100℃, 30min .	100 cycle	0/20
9	Resistance to Soldering Heat (Reflow Soldering)	Tsld=260℃ , 10sec	2 times	0/20

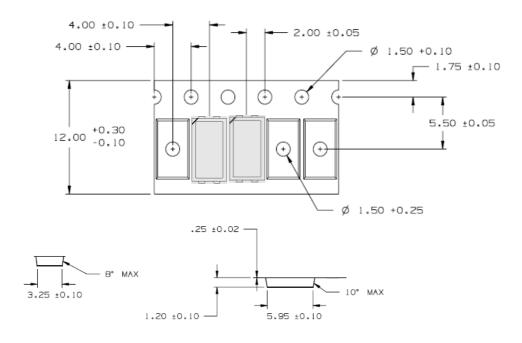
Criteria for Judging the Damage

liam	Cambal	Took Condition	Criteria for	Judgment
Item	Symbol	Test Condition	Min.	Max.
Forward Voltage	VF	l⊧=150 mA	-	Initial Value ×1.1
Radiant flux	Фе	I⊧=150 mA	Initial Value ×0.7	_

8. User Guide

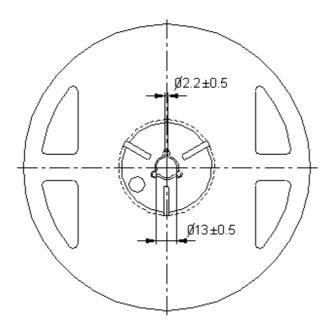

Cleaning

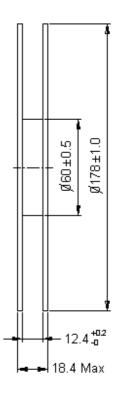
Do not use unspecified chemical liquid to clean LED they could harm the package. If cleaning is necessary, immerse the LED in ethyl alcohol or isopropyl alcohol at normal temperature for less than one minute.


Recommend Printed Circuit Board Attachment Pad

Infrared / vapor phase

Reflow Soldering


Package Dimensions of Tape


Note: All dimensions are in millimeters (inches).

Package Dimensions of Reel

Note: 01. The tolerance unless mentioned is±0.1mm 02. The measured unit is "mm"

Notes:

- 1. Empty component pockets sealed with top cover tape.
- 2. 7 inch reel-3000 pieces per reel.
- 3. Minimum packing quantity is 500 pieces for remainders.
- 4. The maximum number of consecutive missing lamps is two.
- 5. In accordance with EIA-481-1-B specifications.

9. Cautions

9.1 Application

The LEDs described here are intended to be used for ordinary electronic equipment (such as office equipment, communication equipment and household applications). Consult Liteon's Sales in advance for information on applications in which exceptional reliability is required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health (such as in aviation, transportation, traffic control equipment, medical and life support systems and safety devices).

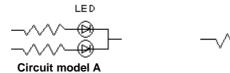
9.2 Storage

This product is qualified as Moisture sensitive Level 3 per JEDEC J-STD-020 Precaution when handing this moisture sensitive product is important to ensure the reliability of the product.

The package is sealed:

The LEDs should be stored at 30℃ or less and 90%RH or less. And the LEDs are limited to use within one year, while the LEDs is packed in moisture-proof package with the desiccants inside.

The package is opened:


The LEDs should be stored at 30℃ or less and 60%RH or less. Moreover, the LEDs are limited to solder process within 168hrs. If exceeding the storage limiting time since opened, that we recommended to baking LEDs at 60℃ at least 24hrs. To seal the remainder LEDs return to package, it's recommended to be with workable desiccants in original package.

9.3 Cleaning

Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LED if necessary.

9.4 Drive Mode

An LED is a current-operated device. In order to ensure intensity uniformity on multiple LEDs connected in parallel in an application, it is recommended that a current limiting resistor be incorporated in the drive circuit, in series with each LED as shown in Circuit A below

- (A) Recommended circuit.
- (B) The brightness of each LED might appear different due to the differences in the I-V characteristics of those LEDs.

LED

Circuit model B

BNS-OD-FC002/A4

9.5 ESD (Electrostatic Discharge)

Static Electricity or power surge will damage the LED. Suggestions to prevent ESD damage:

- Use of a conductive wrist band or anti-electrostatic glove when handling these LEDs.
- All devices, equipment, and machinery must be properly grounded.
- Work tables, storage racks, etc. should be properly grounded.
- Use ion blower to neutralize the static charge which might have built up on surface of the LED's plastic lens as a result of friction between LEDs during storage and handling.

ESD-damaged LEDs will exhibit abnormal characteristics such as high reverse leakage current, low forward voltage, or "no lightup" at low currents. To verify for ESD damage, check for "light up" and V_F of the suspect LEDs at low currents. The V_F of "good" LEDs should be >2.0V@0.1mA for InGaN product and >1.4V@0.1mA for AllnGaP product.

9.6 Suggested Checking List:

- Training and Certification
 - 1. Everyone working in a static-safe area is ESD-certified?
 - 2. Training records kept and re-certification dates monitored?
- Static-Safe Workstation & Work Areas
 - 1. Static-safe workstation or work-areas have ESD signs?
 - 2. All surfaces and objects at all static-safe workstation and within 1 ft measure less than 100V?
 - 3. All ionizer activated, positioned towards the units?
 - 4. Each work surface mats grounding is good?
- Personnel Grounding
 - Every person (including visitors) handling ESD sensitive (ESDS) items wear wrist strap, heel strap or conductive shoes with conductive flooring?
 - 2. If conductive footwear used, conductive flooring also present where operator stand or walk?
 - 3. Garments, hairs or anything closer than 1 ft to ESD items measure less than 100V*?
 - 4. Every wrist strap or heel strap/conductive shoes checked daily and result recorded for all DLs?
 - 5. All wrist strap or heel strap checkers calibration up to date?

Note: *50V for Blue LED.

Device Handling

- 1. Every ESDS items identified by EIA-471 labels on item or packaging?
- 2. All ESDS items completely inside properly closed static-shielding containers when not at static-safe workstation?
- 3. No static charge generators (e.g. plastics) inside shielding containers with ESDS items?
- 4. All flexible conductive and dissipative package materials inspected before reuse or recycle?

Others

- 1. Audit result reported to entity ESD control coordinator?
- 2. Corrective action from previous audits completed?
- 3. Are audit records complete and on file?

9.7 Others:

- Do not put any pressure on the light emitting surface either by finger or any hand tool and do not stack the products. Stress or pressure may cause damage to the wires of the LED array.
- This product is not designed for the use under any of the following conditions, please confirm the performance and reliability are well enough if you use it under any of the following conditions
- Do not use sulfur-containing materials in commercial products including the materials such as seals and adhesives that may contain sulfur.
- Do not put this product in a place with a lot of moisture (over 85% relative humidity), dew condensation, briny air, and corrosive gas (Cl, H₂S, NH₃, SO₂, NO_X, etc.), exposure to a corrosive environment may affect silver plating.
- The appearance and specifications of the product may be modified for improvement without prior notice.

Revision History:

Revision Date:

Last Version:

Version	Page	Content of Change	Date
V 61 31011	Version Fage Content of Change		Record
1.0	All		12/13/2016
1.1	Page 8.	Wave length shift related to current & Wave length shift related to temperature	01/13/2017
1.2	Page 9	New mW & Vf bin	01/19/2017
1.3	Page 9	New BIN TABLE	01/25/2017