onsemi

N-Channel Logic Level Enhancement Mode Field Effect Transistor

NDT014L

General Description

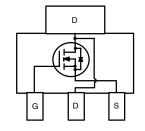
These N–Channel logic level enhancement mode power field effect transistors are produced using **onsemi's** proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on–state resistance, provide superior switching performance, and withstand high energy pulses in the avalanche and commutation modes. These devices are particularly suited for low voltage applications such as DC motor control and DC–DC conversion where fast switching, low in–line power loss, and resistance to transients are needed.

Features

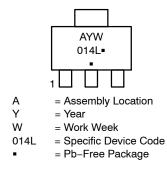
- 2.8 A, 60 V. $R_{DS(ON)} = 0.2 \Omega @ V_{GS} = 4.5 V$ $R_{DS(ON)} = 0.16 \Omega @ V_{GS} = 10 V$
- High Density Cell Design For Extremely Low RDS(ON)
- High Power and Current Handling Capability in a Widely Used Surface Mount Package
- This Device is Pb-Free

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C, unless otherwise noted)

Symbol	Parameter	Value	Unit
V _{DSS}	Drain-Source Voltage	60	V
V _{GSS}	Gate-Source Voltage	±20	V
۱ _D	Drain Current – Continuous (Note 1a)	±2.8	A
	– Pulsed	±10	
PD	Maximum Power Dissipation (Note 1a)	3	W
	(Note 1b)	1.3	
	(Note 1c)	1.1	
T _J , T _{STG}	Operating and Storage Temperature Range	-65 to 150	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS Values are at $T_A = 25$ °C unless otherwise noted.


Symbol	Parameter	Ratings	Unit
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1a)	42	°C/W
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case (Note 1)	12	°C/W

SOT-223 CASE 318H

MARKING DIAGRAM

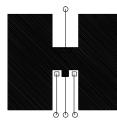
ORDERING INFORMATION

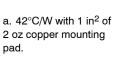
Device	Package	Shipping [†]
NDT014L	SOT-223	4000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
OFF CH	ARACTERISTICS					
BV _{DSS}	Drain–Source Breakdown Voltage	V_{GS} = 0 V, I_{D} = 250 μ A	60	_	_	V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 60 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$ $T_{J} = 55^{\circ}\text{C}$	_	-	25 250	μA
I _{GSSF}	Gate-Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$	-	_	-100	nA
ON CHA	RACTERISTICS (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$ $T_J = 125^{\circ}C$	1 0.8	1.5 1.1	3 2	V
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 2.8 \text{ A}$ $T_{J} = 125^{\circ}\text{C}$	-	0.17 0.22	0.2 0.36	Ω
		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 3.4 \text{ A}$	-	0.12	0.16	
I _{D(on)}	On-State Drain Current	$V_{GS} = 4.5 \text{ V}, V_{DS} = 5 \text{ V}$	5	-	-	A
		$V_{DS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$	10	-	-	
9 FS	Forward Transconductance	$V_{DS} = 5 V, I_D = 2.8 A$	-	4.2	_	S
DYNAM	C CHARACTERISTICS					
C _{iss}	Input Capacitance	$V_{DS} = 30 V, V_{GS} = 0 V,$	-	214	-	pF
C _{oss}	Output Capacitance	f = 1.0 MHz	-	70	-	pF
C _{rss}	Reverse Transfer Capacitance		-	27	-	pF
SWITCH	ING CHARACTERISTICS (Note 2)					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 30 V, I_D = 3 A,$	-	6	12	ns
t _r	Turn–On Rise Time	$V_{\text{GEN}} = 10 \text{ V}, \text{ R}_{\text{GEN}} = 12 \Omega$	-	14	25	ns
t _{d(off)}	Turn–Off Delay Time		-	15	28	ns
t _f	Turn-Off Fall Time		-	10	18	ns
Qg	Total Gate Charge	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 2.8 \text{ A},$	-	36	5	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = 4.5 V$	_	0.8	-	nC
Q _{gd}	Gate-Drain Charge		-	1.4	-	nC
DRAIN-	SOURCE DIODE CHARACTERISTICS A	AND MAXIMUM RATINGS		-	-	
۱ _S	Maximum Continuous Drain-Source Di	ode Forward Current	-	-	2.3	Α

ELECTRICAL CHARACTERISTICS Values are at T_A = 25°C unless otherwise noted

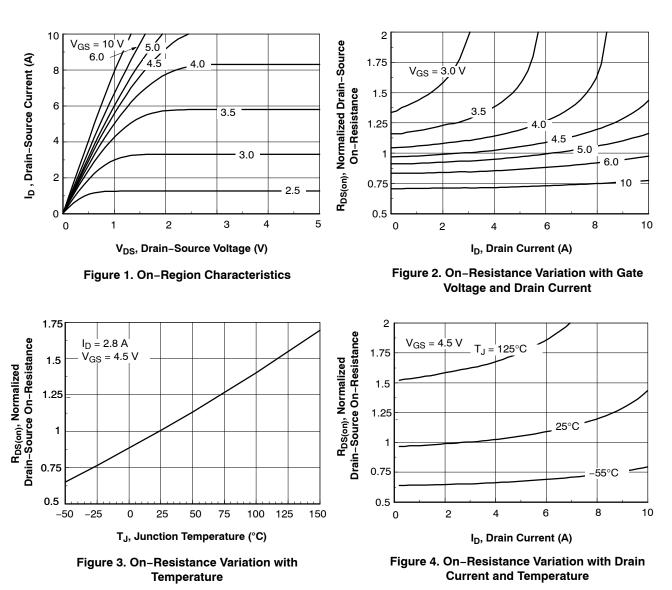

۱ _S	Maximum Continuous Drain-Source Diode Forward Current		-	-	2.3	А
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V, I_S = 2.3 A (Note 2)$	-	0.85	1.3	V
t _{rr}	Reverse Recovery Time	$V_{GS}=~0$ V, $I_F=2.3$ A, $d_{iF}/d_t=100$ A/ μs	-	-	140	ns

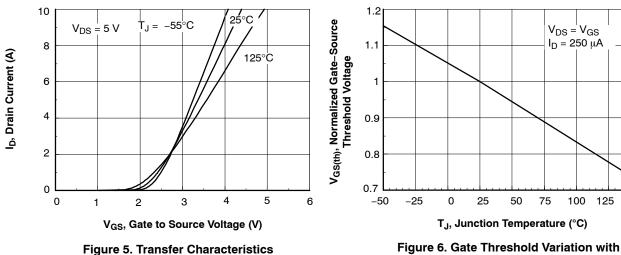

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

$$\mathsf{P}_\mathsf{D}(t) \ = \ \frac{\mathsf{T}_\mathsf{J} - \mathsf{T}_\mathsf{A}}{\mathsf{R}_{\theta\mathsf{J}\mathsf{A}}(t)} = \ \frac{\mathsf{T}_\mathsf{J} - \mathsf{T}_\mathsf{A}}{\mathsf{R}_{\theta\mathsf{J}\mathsf{C}} + \mathsf{R}_{\theta\mathsf{C}\mathsf{A}}(t)} = \ \mathsf{I}^2_\mathsf{D}(t) \ \times \ \mathsf{R}_{\mathsf{DS}(\mathsf{on}) \circledast \mathsf{T}_\mathsf{J}}$$

Applications on 4.5"x5" FR-4 PCB under still air environment, typical $R_{\theta JA}$ is found to be:

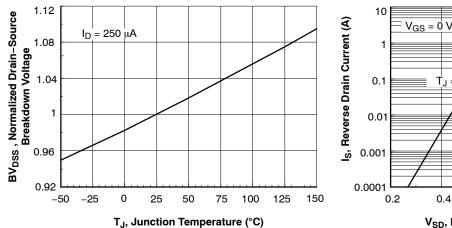

b. 95°C/W with 0.066
in ² of 2 oz copper
mounting pad.

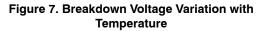

c. 110°C/W with 0.0123 in² of 2 oz copper mounting pad.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle ${\leq}2.0\%.$

TYPICAL CHARACTERISTICS


Temperature


100

125

150

TYPICAL CHARACTERISTICS (continued)

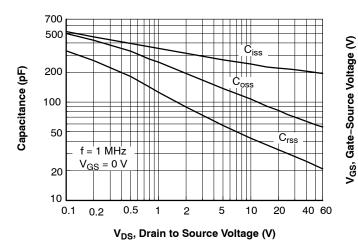


Figure 9. Capacitance Characteristics

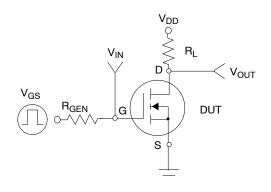


Figure 11. Switching Test Circuit

Figure 8. Body Diode Forward Voltage Variation with Current and Temperature

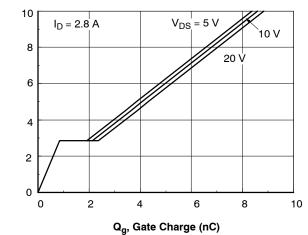


Figure 10. Gate Charge Characteristics

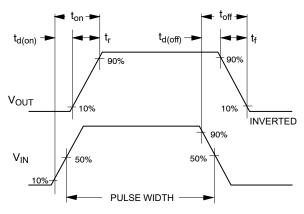
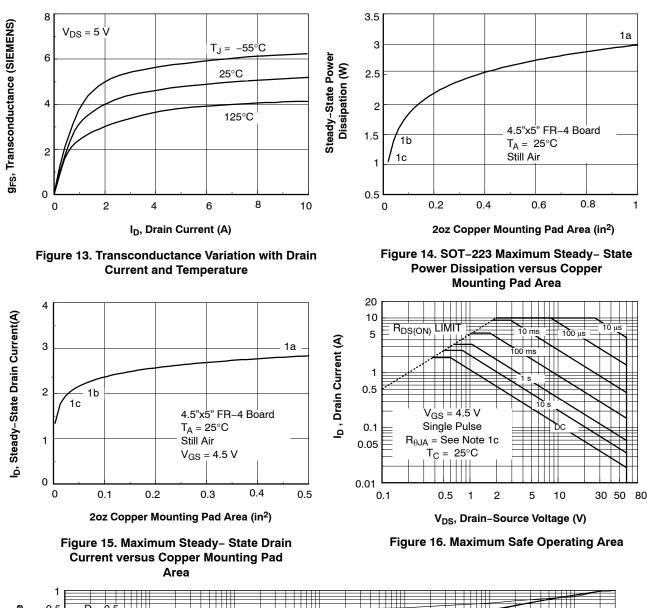



Figure 12. Switching Waveforms

TYPICAL CHARACTERISTICS (continued)

1

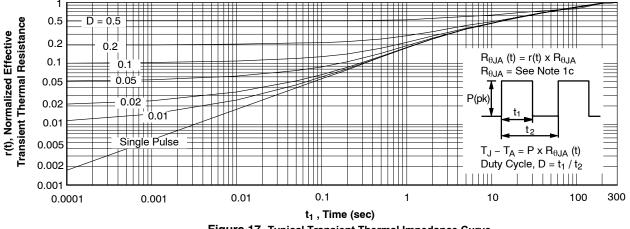


Figure 17. Typical Transient Thermal Impedance Curve Thermal characterization performed under the conditions of Note 1c. Should better thermal design employs, $R_{\theta JA}$ will be lower and reach thermal equivalent sooner.

SOT-223 CASE 318H ISSUE B DATE 13 MAY 2020 A NDTES SCALE 2:1 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009. CONTROLLING DIMENSION: MILLIMETERS DIMENSIONS D & E1 ARE DETERMINED AT DATUM H. DIMENSIONS DO NOT INCLUDE MOLD FLASH, PROTRUSIONS DG GATE BURRS. SHALL NOT EXCEED 0.23mm PER SIDE. LEAD DIMENSIONS & AND &1 DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBBAR PROTRUSION IS 0.08mm PER SIDE. DATUMS A AND B ARE DETERMINED AT DATUM H. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS & AND &1. DIMENSIONING AND TOLERANCING PER ASME 1. b1 2 з. В 4. 5. 6. 7. b AND b1. MILLIMETERS DIM MIN. NITM. MAX. e ___ ___ 1.80 k Α \oplus 0.10 \otimes C A B 0.02 0.06 0.11 A1 TOP VIEW NDTE 7 0.60 0.74 0.88 b 2.90 3.10 b1 3.00 DETAIL A 0.24 ____ 0.35 С H 6.70 D 6.30 6.50 Е 6.70 7.00 7.30 E1 3.30 3.50 3.70 0.10 C 2.30 BSC e SIDE VIEW FND VIEW L 0.25 ___ i 10° 0° ____ -3.80 2.00 Α1 DETAIL A 8.30 3x= Assembly Location GENERIC A 2.00 **MARKING DIAGRAM*** Y = Year = Work Week w XXXXX = Specific Device Code = Pb-Free Package 5'30 AYW 3x 1.50 (Note: Microdot may be in either location) XXXXX= PITCH *This information is generic. Please refer to RECOMMENDED MOUNTING FOOTPRINT device data sheet for actual part marking. For additional information on our Pb-Free strategy Pb-Free indicator, "G" or microdot "•", may ж and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D. or may not be present. Some products may not follow the Generic Marking. Electronic versions are uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98ASH70634A Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOT-223 PAGE 1 OF 1

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights nor the

ON Semiconductor[®]

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative