

Three-Channel Linear LED Driver with Analog and PWM Dimming

DESCRIPTION

TS19605CA20H is a three-channel Linear LED driver with analog and PWM dimming control. This device targets at automotive lighting applications. It provides high-side drivers for LED current configured with the maximum current up to 150mA per channel. By cascade external PNP transistor can reach up to 400mA per channel.

TS19605CA20H operates with a wide input range of 4.5V to 70V and low quiescent current in standby mode. It is designed with various protection functions such as under voltage lockout (UVLO), LED-String open load voltage protection (OLP) and short circuit protection (SCP), I_{SET} pin open/short protection and over-temperature protection (OTP). Diagnostic features are provided meet automotive requirements.

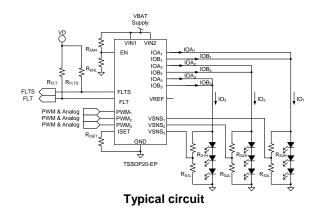
APPLICATION

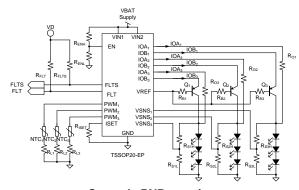
- Automotive LED Lighting:
 - Daytime Running Lamp (DRL) / Interior light
 - Stop or Tail / Position / Fog / Turn Light
- Industrial LED Applications
- General RGB or White LED Drivers

FEATURES

- AEC-Q100 qualified with the following results:
 - Device temperature grade 1: -40°C to 125°C
 - Device HBM ESD classification level H1C
 - Device CDM ESD classification level C6
- Wide input voltage range: 4.5V to 70V
- Max. output current: 150mA per channel
 - Adjustable by external resistor
 - Accuracy: ±4% per channel when I_{OX} @ 200mA
 - Accuracy: ±6% per device when I_{OX} @ 200mA
 - Up to 400mA per channel @ V_{DROPOUT}≤1V
- Dimming function of PWM and Analog
- V_{REF} pin for outside cascade structure to share the power dissipation with full loading
- Diagnostic functionalities (LED-string Open/Short, I_{SET} pin Open/Short, over temperature, supply voltage)
- LED-String voltage feedback per channel for Single-LED Short Detection (SSD)
- Separate fault pin for Single-LED Short Failure
- RoHS Compliant
- Halogen-Free according to IEC 61249-2-21

TSSOP-20EP


Pin Definition:


1

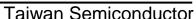
1. VIN₁	6. PWM ₂	11. FLTS	16. IOA ₂
2. EN	7. PWM ₃	12. FLT	17. IOB ₁
3. GND	8. VSNS₁	13. IOB ₃	18. IOA ₁
4. ISET	9. VSNS ₂	14. IOA ₃	19. VIN ₂
5. PWM₁	10. VSNS ₃	15. IOB ₂	20. VREI

Notes: MSL 3 (Moisture Sensitivity Level) per J-STD-020

TYPICAL APPLICATION CIRCUIT

Cascade PNP transistor

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise specified) (Note 1)							
PARAMETER	SYMBOL	LIMIT	UNIT				
Power input voltage - Battery power supply	V_{VIN1}/V_{VIN2}	-0.3 to 75	V				
EN input voltage	V_{EN}	-0.3 to 75	V				
Current channel output voltage	V_{IOAX}/V_{IOBX}	-0.3 to 75	V				
V _{REF} bias voltage	V_{REF}	V _{VIN2} -2	V				
FLT/FLT_S signal voltage	V_{FLT},V_{FLTS}	-0.3 to 22	V				
ISET input voltage	V _{ISET}	-0.3 to 5.5	V				
PWM/Analog signal input voltage	V_{PWMX}	-0.3 to 5.5	V				
Current channel sense input voltage	V_{VSNSX}	-0.3 to 5.5	V				
Junction Temperature Range	TJ	-40 to +150	°C				
Storage Temperature Range	T _{STG}	-65 to +150	°C				
ESD Rating (Human Body Mode)	HBM	±2	kV				
ESD Rating (Charged Device Mode)	CDM	±1	kV				

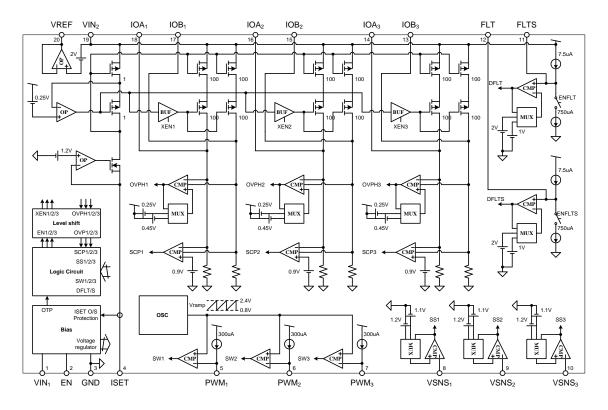

THERMAL PERFORMANCE (Note 2)								
PARAMETER	SYMBOL	LIMIT	UNIT					
Thermal Resistance Junction to Ambient	$R_{ heta JA}$	145	°C/W					
Thermal Resistance Junction to Ambient (Note 2-1)	$R_{ heta JA}$	45	°C/W					
Thermal Resistance Junction to Case	R _{eJC}	48	°C/W					
Thermal Resistance Junction to Case (Note 2-1)	R _{eJC}	15	°C/W					

RECOMMENDED OPERATING CONDITION (T _A = 25°C unless otherwise specified) (Note 3)							
PARAMETER	SYMBOL	LIMIT	UNIT				
Power input voltage - Battery power supply	V _{VIN1} /V _{VIN2}	5 to 70	V				
EN input voltage	V _{EN}	0 to 70	V				
Current channel output voltage	V _{IOAX} /V _{IOBX}	0 to 70	V				
V _{REF} bias voltage	V_{VREF}	V_{VIN2} -2	V				
FLT/FLT_S signal voltage	V_{FLT} , V_{FLTS}	0 to 20	V				
ISET output voltage	V _{ISET}	0 to 5	V				
PWM/Analog signal input voltage	V _{PWMX}	0 to 5	V				
Current channel sense input voltage	V _{VSNSX}	0 to 5	V				
Storage Temperature Range	T _{STG}	-55 to +150	°C				
Operating Junction Temperature Range	T _J	-40 to +150	°C				
Operating Ambient Temperature Range	T _{OPA}	-40 to +125	°C				

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Supply Voltage		00112111011		<u> </u>	1	01111
V _{IN} Turn-on Threshold	V _{VIN ON}	V _{EN} = 5V	4.2	4.8	5.4	V
V _{IN} Hysteresis	V _{VIN_HYS}	V _{EN} = 5V	0.26	0.33	0.4	V
EN Turn-on Threshold	V _{EN_ON}		1.3	1.65	2	V
Quiescent Current	ΙQ	$V_{EN} = 5$; $V_{IN} = 4.2V$	10	12.5	26	μA
Shutdown Current	I _{SD}	$V_{EN} = 0; V_{IN} = 14V$	40		80	μA
Operating Supply Current	I _{CC}	Not including $IO_X \& I_{SET}$ $R_{ISET} = 1.2k\Omega$; $VIO_X = 10V$	0.5		2	mA
Shutdown Current in Fault mode	I _{Fault}	IGE1 , - X -	0.55		1.3	mA
Regulator (Note 4, 5)					l	
Output Current Range	IOA _X /IOB _X	VIOA _X & VIOB _X = V _{VIN2} -1	4		400	mA
Channel Accuracy	Δ I _{O(channel)}	$R_{ISET} = 1.2k\Omega$	-4		+4	%
Device Accuracy	Δ I _{O(device)}	$R_{ISET} = 1.2k\Omega$	-6		+6	%
Ratio of IO ₂ to Setting Current	K _{I (CH2)}	$R_{ISET} = 1.2k\Omega$		180		
IO Setting Reference Voltage	V _{ISET}	$R_{ISET} = 1.2k\Omega$	1.1	1.3	1.5	V
V _{IN} -Base Reference Voltage	V_{REF}	$I_{VREF} = 0mA;$	2.07		2.6	V
Driver capability of V _{REF}	ΔV_{REF}	$I_{VREF} = \pm 20 \text{mA}$	-5		5	%
Fault Flag (FLT & FLTS)						
Logic Input High Threshold	$V_{IH_FLT(S)}$		2			V
Logic Input Low Threshold	$V_{IL_FLT(S)}$				0.7	V
Logic Output High threshold	$V_{OH_FLT(S)}$	1μA Source Current	2			V
Logic Output Low Threshold	$V_{OL_FLT(S)}$	500μA Sink Current			0.7	V
Strong Pull-up Current	I _{PU}	$V_{FLT(S)} = 3V$	500	750	1000	μA
Strong Pull-down Current	I _{PD}	$V_{FLT(S)} = 2V$	4	8	16	μA
Comparator (VSNS _X)						
Comparator Reference Voltage	$VSNS_{X_REF}$	$IO_X = 10mA$; $VIO_X = 6V$	1	1.2	1.4	V
VSNS _X Hysteresis	$VSNS_{X_HYS}$	V _{VIN} > 9V		130		mV
Signal Short Detection Enable	VIN _{SSEN}	$IO_X = 10mA$; $VIO_X = 6V$	7.9	9	10.1	V
VIN for Short Circuit Hysteresis	VIN _{SSEN_HYS}	VSNS _X < 1V	-	1		V
Protection						
Open Load Detection Voltage	V_{OLVX}	$V_{OLV} = V_{IN} - VIO_X$	155	315	465	mV
Open Load Detection Hysteresis	V _{OLX_HYS}	$V_{OLV} = V_{IN} - VIO_X$		140		mV
Short Detection Voltage	V _{SCPX}	IO _X =10mA	0.85	0.95	1.05	V
		I _{FLT} =10mA	1	2	3	ms
Short-detection deglitch	T_{DG}	During PWM; count the number of ms continuous cycles when VIO _X < V _{SCPX}	7		8	ms
	i	VFLT pull low			i	kΩ

ELECTRICAL SPECIFICATIONS (V _{IN} = 14V, T _J = -40°C to 150°C unless otherwise specified)								
PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT		
I _{SET} Short Detection	R _{ISET_SHORT}	VFLT pull low	400			Ω		
Dimming								
PWM Dimming High Threshold Voltage	Vон_рwмх		2.5			V		
PWM Dimming Low Threshold Voltage	Vol_pwmx				0.7	V		
Analog Dimming Threshold Voltage of 100% Current Level	VMAX_PWMX			2.4	2.48	V		
Analog Dimming Threshold Voltage of 1% Current Level	V _{MIN_} PWMX		0.72	0.8		V		
PWM _X Source Current	I _{PWMX}	V _{PWMX} = 2.5V	250	300	350	μA		
Thermal Section (Note 6, 7)								
Thermal Shutdown	TSD			165		°C		
Temperature Hysteresis	T _{HYS}			15		°C		

Note:


- Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. Functional
 operation of the device at these or any other conditions beyond those indicated in the operational sections of the
 specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device
 reliability.
- 2. Thermal resistance is specified with the component mounted on a test board in free air with low effective thermal conductivity at $T_A=25$ °C.
 - 2-1: Mounted on aluminum 4oz PCB
- 3. The device is not guaranteed to function outside its operating conditions.
- 4. Channel accuracy: I(IOUTx) I(avg) / I(avg)
 - 4-1: $I_{(AVG)} = [I_{(IOUT1)} + I_{(IOUT2)} + I_{(IOUT3)}] / 3$
- 5. Device accuracy: I(IOUTx) I(setting) / I(setting)
 - 5-1: I_(setting) is the target current set by R_{ref}.
- 6. Guaranteed by design.
- 7. Auto Recovery type.

ORDERING INFORMATION

ORDERING CODE		PACKAGE	PACKING		
TS19605CA	20H RLG	TSSOP-20EP	2,500pcs / 13" Reel		

FUNCTION BLOCK

PIN DESCRIPTION

PIN NO.	NAME	FUNCTION						
1	V _{IN1}	Battery power input voltage for bias circuit						
2	EN	Enable and shut down pin						
3	GND	ound return for all internal circuitry						
4	I _{SET}	Connect external resistor to GND to set output current of each channel						
5	PWM ₁	PWM/Analog dimming voltage input of Channel 1						
6	PWM ₂	PWM/Analog dimming voltage input of Channel 2						
7	PWM ₃	PWM/Analog dimming voltage input of Channel 3						
8	VSNS₁	LED string voltage sense input 1						
9	VSNS ₂	LED string voltage sense input 2						
10	VSNS ₃	LED string voltage sense input 3						
11	FLTS	Single LED short fault terminal						
12	FLT	Fault terminal						
13	IOB ₃	Current output terminal 3 of B channel						
14	IOA ₃	Current output terminal 3 of A channel						
15	IOB ₂	Current output terminal 2 of B channel						
16	IOA ₂	Current output terminal 2 of A channel						
17	IOB ₁	Current output terminal 1 of B channel						
18	IOA ₁	Current output terminal 1 of A channel						
19	V _{IN2}	Battery power input voltage for driver circuit						
20	V_{REF}	V _{IN} -Base reference voltage						
-	EP	Exposed Pad. Connect EP to a large-area ground plane for effective power dissipation. Do not use as the IC ground connection						

TYPICAL PERFORMANCE CURVES

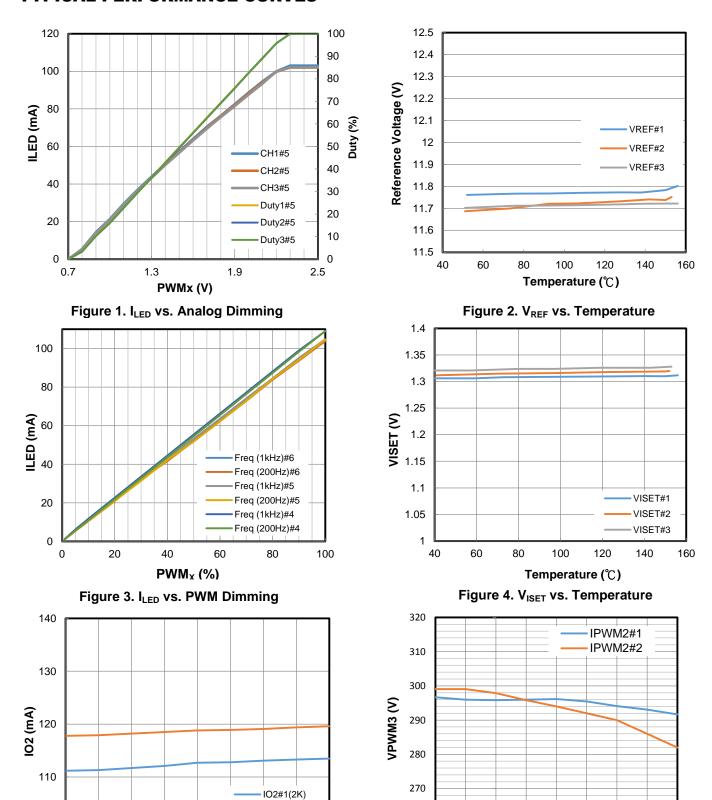


Figure 5. IO2 vs. Temperature

40

Temperature (°C)

60

100

-40

-20

IO2#2(2K)

100

120

80

260

-40

-20

Figure 6. IPWMX vs. Temperature

40

Temperature (°C)

60

80

100 120

APPLICATION INFORMATION

TS19605CA20H is a 3 channel Linear LED driver with PWM and Analog dimming. It designs with constant source current of PWMX pin for linear current decrease by NTC resistor or difference each current level by resistor. The device has wide input operation voltage from 4.5 to 70V and provide three high side drivers for LED current configured. the driver current can up to 400mA per channel by cascade external PNP transistor. The device also provides V_{IN} -base reference voltage V_{REF} for cascade structure of PNP base current to share the power dissipation or use shunt resistor to share power dissipation.

TS19605CA20H monitor the fault conditions from the thermal, I_{OX} , V_{SNSX} and I_{SET} pin to report its status on the FLT and FLTS terminal. The Fault condition Include thermal shutdown, LED load open/short, single LED short and I_{SET} pin open/short. Two separate fault terminals allow maximum flexibility of fault-mode reporting to the MCU in case of an error.

Pin Definitions

VIN_x Pin

Power supply input for the TS19605 during normal operation. V_{IN1} major in IC bias current, V_{IN2} is for output driver current. The device will start up when V_{VIN} reaches 4.8V (typical) and will shut down when V_{VIN} voltage is below 4.5V (typical). For the signal LED short detection function. V_{VIN} must be reaches 9V (typical) and will shut down when V_{IN} voltage is below 8V (typical).

EN Pin

The EN pin can sense V_{IN} information by voltage divider resister setting or directly connect to V_{IN} pin. The device will enable on the device when V_{EN} over 2V.

GND Pin

GND is the reference node of internal circuit.

ISET Pin

The output current could be linearly adjusted through variable resister connected between I_{SET} and GND pin.

PWM_x Pin

A PWM and Analog dimming function is applied in TS19605CA20H. The Analog dimming range is an analog voltage from 0.8V to 2.4V and the PWM dimming function is the same pin of analog dimming. The current regulation is decided by duty cycle of external PWM signal. Built-in 300µA source current to decided analog dimming voltage by resistor or NTC application.

VSNS_X

The VSNS_X pin can sense LED string information by voltage divider resister to define the single LED short condition.

APPLICATION INFORMATION (CONTINUE)

FLT/FLTS Pin

There are two separate fault terminals (FLT/FLTS) allow maximum flexibility of fault-mode reporting to the MCU. And they are I/O terminals for many control mechanisms as below table.

Fault Table

Fault Type	Fault Select	Condition	FAULT (V)	FAULTS (V)	10 _x (V)	IO _x (V)	IO _x (V)	Failure Removed	Fault Clear
	FAULT & FAULTS	IO _X Short GND V(VIN) > 5V; V(IOUTX) < 0.9V	Pulled Low	Pulled Low	OFF	OFF	OFF	Latch	Restart (EN)
SHORT	Floating	IO _X Single LED short V(VIN) > 9V; V(VSNSX) < 1.2V	Pulled High	Hiccup	ON	ON	ON	Latch	Restart (EN)
SHORT	FAULT & FAULTS	IOX Short GND V(VIN) > 5V; V(IOUTX) < 0.9V	Pulled High	Pulled Low	OFF	ON	ON	Latch	Restart (EN)
	Externally Pulled High	IO _X Single LED short V(VIN) > 9V; V(VSNSX) < 1.2V	Pulled High	Pulled High	ON	ON	ON	Latch	Restart (EN)
OPEN	FAULT Floating	lout1 OPEN; V(VIN) > 5V V(VIN)-V(IOX) <300mV	Pulled Low	Pulled High	OFF	OFF	OFF	Auto recover	Auto recover
	FAULT Externally Pulled High	lout1 OPEN; V(VIN) > 5V V(VIN)-V(IOX) < 300mV	Pulled High	Pulled High	OFF	ON	ON	Auto recover	Auto recover
Thermal shutdown	FAULT Floating	V(VIN) > 5V Temperature >165°C	Pulled Low	Pulled Low	OFF	OFF	OFF	Temperature < 155°C	Auto recover
ISET Pin	FAULT Floating	RREF > 200kΩ V(VIN) > 5V	Pulled Low	Pulled Low	OFF	OFF	OFF	Latch	Restart (EN)
open or short	FAULT Floating	RREF < 400Ω V(VIN) > 5V	Pulled Low	Pulled Low	OFF	OFF	OFF	Latch	Restart (EN)

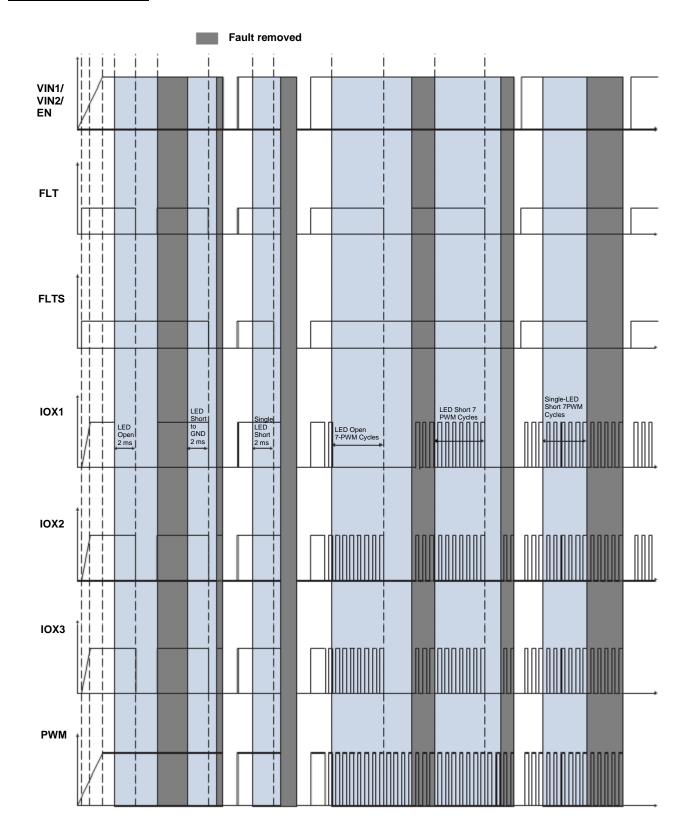
IO_x Pin

This is the current output pin to driver LED load. The output current can be expressed as below.

$$IOA_x = IOB_x = 0.5 \times K_I \times \frac{V_{ISET}}{R_{ISET}} = 0.5 \times IO_x$$

Where:

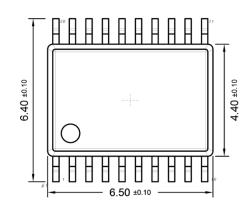
- K_I is the ratio of current factor
- V_{ISET} is the internal reference voltage (1.2V)

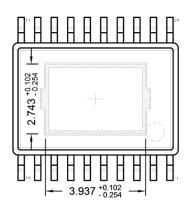

8

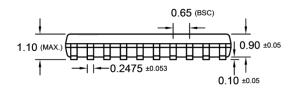
• R_{ISET} is the sensing resistor connected between ISET pin and the GND

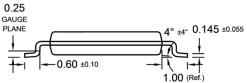
APPLICATION INFORMATION (CONTINUE)

Detail Timing Diagram

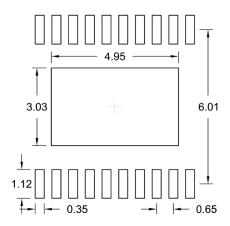



9




PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

TSSOP-20EP



SUGGESTED PAD LAYOUT (Unit: Millimeters)

10

MARKING DIAGRAM

Y = Year Code

M = Month Code for Halogen Free Product

 \mathbf{O} =Jan \mathbf{P} =Feb \mathbf{Q} =Mar \mathbf{R} =Apr

S =May T =Jun U =Jul V =Aug

W = Sep X = Oct Y = Nov Z = Dec

L = Lot Code (1~9, A~Z)

Taiwan Semiconductor

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Purchasers are solely responsible for the choice, selection, and use of TSC products and TSC assumes no liability for application assistance or the design of Purchasers' products.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.