



# UHP-1500 Communication Note

| A.PMBus Communication Interface        | 1 |
|----------------------------------------|---|
| 1.Addressing                           | 1 |
| 2.Control Setting                      | 1 |
| 3.Factory Resetting                    | 1 |
| 4.Initial Operational Behavior Setting | 1 |
| 5.Command List                         | 2 |
| 6.Data Range and Tolerance             | 3 |
| B.CANBus Communication Interface       | 5 |



## **UHP-1500 Communication Note**

#### **A.PMBus Communication Interface**

- ©UHP-1500 is compliant with PMBus Rev.1.1, the maximum communication speed is 100KHz and up to 8 device addresses available.
- ©PMBus communication interface is able to provide the current operating status ad information as followings:
  - 1. Output voltage, current and internal temperature.
  - 2.Alarm and status.
  - 3. Manufacture and model data.

#### 1.Addressing

©Each UHP-1500 unit should have their unique and own device address to communicate over the bus. 7-bit addressing method is used to assign a device address for a UHP-1500 unit, as shown below.

| MSB |   |   |   |    |    | LSB |  |
|-----|---|---|---|----|----|-----|--|
| 1   | 0 | 0 | 0 | A2 | A1 | A0  |  |

A0-A2 allow users to designate an address for the supply; these three bits are defined through a 3-pole DIP switch on the output end. There are up to 8 different device addresses are available to be assigned. When DIP switch in the "ON" position means logic "0"; when it is in the "OFF" position, meaning logic "1". For example, position 3 in "OFF", the corresponding bit, A2, is set at logic "1". Please refer to Table 1-1 for the detailed setup advice.

|        | Dev  | ice addr | ess    |
|--------|------|----------|--------|
| Module | A0   | A0 A1    |        |
| No.    | DIPs | witch po | sition |
|        | 1    | 2        | 3      |
| 0      | ON   | ON       | ON     |
| 1      | OFF  | ON       | ON     |
| 2      | ON   | OFF      | ON     |
| 3      | OFF  | OFF      | ON     |
| 4      | ON   | ON       | OFF    |
| 5      | OFF  | ON       | OFF    |
| 6      | ON   | OFF      | OFF    |
| 7      | OFF  | OFF      | OFF    |

Table1-1

#### 2.Control Setting

- - NOTE: 1. At default setting of analog, the following commands are invalid but can be written while other PMBus commands are effective: OPEREATION(01h), VOUT\_TRIM(22h) and IOUT\_OC\_FAULT\_LIMIT(46h).
    - 2. All written parameters of commands: 01h, 22h and 46h are saved into EEPROM and take effect after the digital is activated.

#### 3. Factory Resetting

- Ousers can follow the steps below to restore factory settings for commands: 01h, 22h, 46h and BEh.
  - 1.Set DIP switch all in the "ON" position.
  - 2. Turn on the AC without remote on, there should be no voltage at the output.
  - 3. Within 15 seconds, set DIP switch all in the "OFF" position and all back in the "ON" again.
  - 4. The green LED flashing 3 times means the process is successfully done.
  - 5. Restart the supply to load factory settings.

#### 4.Initial Operational Behavior Setting

©Initial behavior of the power supply can be changed by setting OPERATION\_INIT of SYSTEM\_CONFIG(BEh), for example: power on without output. For detailed information, please refer to 5. Command List.

## 5.Command List

©The command list of the UPH-1500 is shown in Table 5-1. It is compliant with the standard protocol of PMBus Rev 1.1. For more detailed information, please refer to PMBus official website (http://pmbus.org/specs.html)

| Command<br>Code | Command<br>Name        | Transaction<br>Type | # of data<br>Bytes | Description                                                             |
|-----------------|------------------------|---------------------|--------------------|-------------------------------------------------------------------------|
| 01h             | OPERATION              | R/W Byte            | 1                  | Remote ON/OFF control                                                   |
| 02h             | ON_OFF_CONFIG          | Read Byte           | 1                  | ON/OFF function configuration                                           |
| 19h             | CAPABILITY             | Read Byte           | 1                  | Capabilities of a PMBus device                                          |
| 20h             | VOUT_MODE              | R Byte              | 1                  | Define data format for output voltage (format: Linear, N= -9)           |
| 21h             | VOUT_COMMAND           | R Word              | 2                  | Output voltage setting value (format: Linear, N= -9)                    |
| 22h             | VOUT_TRIM              | R/W Word            | 2                  | Output voltage trimmed value (format: Linear, N= -9)                    |
| 46h             | IOUT_OC_FAULT_LIMIT    | R/W Word            | 2                  | Output overcurrent setting value (format: Linear, N= -3)                |
| 47h             | IOUT_OC_FAULT_RESPONSE | R Byte              | 1                  | Define protection and response when a output overcurrent fault occurred |
| 79h             | STATUS_WORD            | R Word              | 2                  | Summary status reporting                                                |
| 7Ah             | STATUS_VOUT            | R Byte              | 1                  | Output voltage status reporting                                         |
| 7Bh             | STATUS_IOUT            | R Byte              | 1                  | Output current status reporting                                         |
| 7Ch             | STATUS_INPUT           | R Byte              | 1                  | AC input voltage status reporting                                       |
| 7Dh             | STATUS_TEMPERATURE     | R Byte              | 1                  | Temperature status reporting                                            |
| 7Eh             | STATUS_CML             | R Byte              | 1                  | Communication, logic,<br>Memory status reporting                        |
| 80h             | STATUS_MFR_SPECIFIC    | R Byte              | 1                  | Manufacture specific status reporting                                   |
| 88h             | READ_VIN               | R Word              | 2                  | AC input voltage reading value (format: Linear, N=-1)                   |
| 8Bh             | READ_VOUT              | R Word              | 2                  | Output voltage reading value (format: Linear, N= -9)                    |
| 8Ch             | READ_IOUT              | R Word              | 2                  | Output current reading value (format: Linear, N= -3)                    |
| 8Dh             | READ_TEMPERATURE_1     | R Word              | 2                  | Temperature 1 reading value (format: Linear, N= -3)                     |
| 98h             | PMBUS_REVISION         | R Byte              | 1                  | The compliant revision of the PMBus (default: 11h for Rev. 1.1)         |
| 99h             | MFR_ID                 | Block Read          | 12                 | Manufacturer's name                                                     |
| 9Ah             | MFR_MODEL              | Block Read          | 12                 | Manufacturer's model name                                               |
| 9Bh             | MFR_REVISION           | Block Read          | 24                 | Firmware revision                                                       |
| 9Ch             | MFR_LOCATION           | Block R/W           | 3                  | Manufacturer's factory location                                         |
| 9Dh             | MFR_DATE               | Block R/W           | 6                  | Manufacture date. (format: YYMMDD)                                      |
| 9Eh             | MFR_SERIAL             | Block R/W           | 12                 | Product serial number                                                   |
| BEh             | SYSTEM_CONFIG          | R/W Word            | 2                  | System setting                                                          |
| BFh             | SYSTEM_STATUS          | Read Word           | 2                  | System status                                                           |

Table 5-1

## ○Definition of Command BEh SYSTEM\_CONFIG:

|           | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2    | Bit1    | Bit0    |
|-----------|------|------|------|------|------|---------|---------|---------|
| High byte | -    | -    | -    | -    | -    | -       | -       | =       |
| Low byte  | -    | -    | -    | -    | -    | OPERATI | ON_INIT | PM_CTRL |

#### Low byte

Bit 0 PM\_CTRL: PMBus Control Selecting

0=Output voltage and current controlled by SVR/PV/PC(default)

1=Output voltage, current and remote ON/OFF controlled by PMBus (VOUT\_TRIM, IOUT\_FAULT\_LIMIT, OPERATION)

Bit 1: 2 OPERATION\_INIT: Initial Operational Behavior

0b00 = Power on with 0x00: OFF

0b01 = Power on with 0x80: ON (default)

0b10 = Power on with the last setting

0b11 = Not used

Note: Unsupported settings display with "0"

## Opefinition of Command BFh SYSTEM\_STATUS:

|           | Bit7 | Bit6  | Bit5              | Bit4   | Bit3 | Bit2 | Bit1  | Bit0 |
|-----------|------|-------|-------------------|--------|------|------|-------|------|
| High byte | -    | -     | -                 | -      | -    | -    | -     | -    |
| Low byte  | -    | EEPER | INITIAL_<br>STATE | ADL_ON | -    | -    | DC_OK | -    |

#### Low byte

Bit 1: DC\_OK: The DC Output Status

0 = DC output too low

1=DC output at a normal range

 $\begin{aligned} & \text{Bit 4 ADL\_ON}: \text{ Active Dummy Load Status} \\ & 0 \! = \! \text{Active dummy load NOT activate} \end{aligned}$ 

1 = Active dummy load activating

Bit 5 INITIAL\_STATE: Initial State Indication

0 = The unit NOT in an initial state

1 =The unit in an initial state

Note: Unsupported settings display with "0"

Bit 6 EEPER: EEPROM Access Error

0 = EEPROM accessing normally

1 = EEPROM access error

Note:

EEPER: When EEPROM Access Error occurs, the supply stops working and the LED indicator turns off. The supply needs to re-power on to recover after the error condition is removed.

## 6.Data Range and Tolerance

## ODisplay parameters

|      | PMBus command      | Model | Range      | Tolerance |
|------|--------------------|-------|------------|-----------|
| 88h  | READ_VIN           | ALL   | 80 ~ 264V  | ±10V      |
| 8Bh  | h READ_VOUT        | 24V   | 0 ~ 28.8V  | ±0.24V    |
| ODII |                    | 48V   | 0 ~ 57.6V  | ±0.48V    |
| 8Ch  | READ IOUT          | 24V   | 0 ~ 75A    | ±1.5A     |
| 0011 | (Note. 1)          | 48V   | 0 ~ 38A    | ±0.75A    |
| 8Dh  | READ_TEMPERATURE_1 | ALL   | -40 ~ 110℃ | ±5°C      |

Table 6-1

## Ocontrol parameters

|      | PMBus command             | Model | Range              | Tolerance | Default |
|------|---------------------------|-------|--------------------|-----------|---------|
| 01h  | OPERATION                 | ALL   | 00h(OFF) / 80h(ON) | N/A       | 80h(ON) |
| 21h  | VOUT COMMAND              | 24V   | 24V                | N/A       | 24V     |
| 2111 | (Note. 2)                 | 48V   | 48V                | N/A       | 48V     |
| 22h  | VOUT TRIM                 | 24V   | -12 ~ 4.8V         | ±0.24V    | 0V      |
| 2211 | (Note. 2)                 | 48V   | -24 ~ 9.6V         | ±0.48V    | 0V      |
| 46h  | IOUT OC FAULT LIMIT       | 24V   | 12.5 ~ 68.75A      | ±1.5A     | 68.75A  |
| 4011 | 46h   IOUT_OC_FAULT_LIMIT |       | 6.37 ~ 34.62A      | ±0.75A    | 34.62A  |
| BEh  | SYSTEM_CONFIG             | ALL   | N/A                | N/A       | 02h     |

Table 6-2

#### Note:

1.READ\_IOUT will display ZERO amp when output current is less than the values in the table below.

| Model | Minimum readable current |
|-------|--------------------------|
| 24V   | 2.5A±1A                  |
| 48V   | 1.6A±1A                  |

Table 6-3

2. When using PMBus to adjust output voltage, VOUT\_COMMAND only can be used to display the rated voltage of the unit and cannot be written. It is VOUT\_TRIM that provides voltage trimming function. Take UPH-1500-24 as an example, to get a 12V output, please set value of VOUT\_TRIM to -12V. Adjustable voltage range for each model is shown as below.

| Model | Adjustable voltage range |
|-------|--------------------------|
| 24V   | 12 ~ 28.8V               |
| 48V   | 24 ~ 57.6V               |

Table 6-4

- 3.Insert a at least 35msec delay between commands.
- 4. Data format of IOUT\_OC\_FAULT\_LIMIT(46h) is as below: (Please refer to PMBus\_Specification\_Part\_II\_Rev\_1-1 for detailed information).

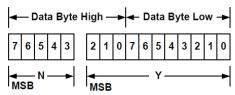



Figure 4. Linear Data Format Data Bytes

The relation between Y, N and the "real world" value is:

 $X = Y \cdot 2^N$ 

Where, as described above:

X is the "real world" value;

Y is an 11 bit, two's complement integer; and

N is a 5 bit, two's complement integer.

Devices that use the Linear format must accept and be able to process any value of N.

5.Data format of VOUT\_MODE, VOUT\_COMMAND, VOUT\_TRIM, READ\_VIN, READ\_VOUT, READ\_IOUT, READ\_TEMPERATURE\_1 is as below:(Please refer to PMBus\_Specification\_Part\_II\_Rev\_1-1 for detailed information)

#### (1)DIRECT Data Format

DIRECT format data is a two byte, two's complement binary integer. IRECT format data may be used with any command that sends or reads a arametric value. If a PMBus device uses DIRECT form data, this shall be clearly described in the product literature.

#### a. Interpreting Received Values

The host system uses the following equation to convert the value received from the PMBus device into a reading of volts, amperes, degrees Celsius or other units as appropriate:

$$X = \frac{1}{m} (Y \cdot 10^{-R} - b)$$

#### Where:

X, is the calculated, "real world" value in the appropriate units (A, V, °C, etc.);

m, the slope coefficient, is a two byte, two's complement integer;

Y, is a two byte two's complement integer received from the PMBus device;

b, the offset, is a two byte, two's complement integer; and

R, the exponent, is a one byte, two's complement integer.

## b. Sending A Value

To send a value, the host must use the equation in Section 7.2.1 solved for Y:

$$Y = (mX + b) \cdot 10^R$$

## Where:

Y is the two byte two's complement integer to be sent to the unit;

 $\it m$ , the slope coefficient, is the two byte, two's complement integer;

X, a "real world" value, in units such as amperes or volts, to be converted for transmission;

b, the offset, is the two byte, two's complement integer; and

 ${\cal R},$  the exponent, is the decimal value equivalent to the one byte, two's complement integer.

©Please refer to the specification about PV/PC or SVR function.

## **B.CANBus Communication Interface**

©For further CAN bus information, please contact MEAN WELL.

# 明緯企業股份有限公司 MEAN WELL ENTERPRISES CO., LTD.

248 新北市五股區五權三路28號
No.28, Wuquan 3rd Rd., Wugu Dist., New Taipei City 248, Taiwan
Tel:886-2-2299-6100 Fax:886-2-2299-6200
http://www.meanwell.com E-mail:info@meanwell.com

Your Reliable Power Partner